
Chapter 8

How to Use CVS?

8.1 What is CVS?

CVS is an acronym for the ”Concurrent Versions System”. It is a ”Source Control” or ”Revision
Control” tool having the following features:

• Non-proprietory and can be downloaded from the internet;

• Allows users to work simultaneously on the same file, keep track of changes by revision, tag
and date;

• Can obtain an ealier version of the software easily;

• Allows the user to track the supplier’s software releases while making code changes locally.

• Enables the user to merge code changes between his version and supplier’s automatically and
identify problems if merge presents contradictions;

• A user of CVS needs only to know a few basic commands to use the tool.

Here are some important terms used with CVS:

Repository: The directory storing the master copies of the files. The main or master repository is
a tree of directories.

Module: A specific directory (or mini-tree of directories) in the main repository. Modules are
defined in the CVS modules file.

RCS: Revision Control System. A lower-level set of utilities on which CVS is layered.

Check out: To make a copy of a file from its repository that can be worked on or examined.

Revision: A numerical or alpha-numerical tag identifying the version of a file.

8.2 How to Use CVS?

There are two ways you can use CVS:

1. Use CVS to keep up to date with the GMI code changes. This will require a sourcemotel
account.

2. Use CVS to track both GMI code releases and your own changes. Again you can do this either
on sourcemotel or on your local machine (with your own CVS installation).

30

8.3 Use CVS to Keep Up to Date with GMI Source Code
Changes

CVS is used to keep track of collections of files in a shared directory called ”The Repository”. Each
collection of files can be given a ”module” name, which is used to ”checkout” that collection. After
checkout, files can be modified (using your favorite editor), ”committed” back into the Repository
and compared against earlier revisions. Collections of files can be ”tagged” with a symbolic name for
later retrieval. You can add new files, remove files you no longer want, ask for information about sets
of files in three different ways, produce patch ”diffs” from a base revision and merge the committed
changes of other developers into your working files. In this section, we explain how these operations
are done with the GMI code. It is assumed that the user has an account on sourcemotel and that
CVS is installed on his local computer.

We assume that you have already obtained a copy of the code (say the most recent release) from
sourcemotel by using the command:

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co gmi_gsfc

A directory labeled gmi gsfc (containing the code) will be created at the location where the command
was executed.

Assume that you want to know all the different available releases (with the associated tags) of
the GMI code. From the gmi gsfc directory, type

%cvs status -v Makefile

to obtain the status of the file Makefile. The results give (first few lines):

===
File: Makefile Status: Up-to-date

Working revision: 1.18
Repository revision: 1.18 /cvsroot/gmi/gmi_gsfc/Makefile,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

Existing Tags:
fromGEMHOME_to_GMIHOME (revision: 1.18)
NOxEmissionsScalingFactors_v3 (revision: 1.17)
NOxEmissionsScalingFactors_v2 (revision: 1.17)
Lightning_Branch_fvgcm_ap1_0 (revision: 1.14)
NOxEmissionsScalingFactors_v1 (revision: 1.17)
Lightning_Branch_fvgcm_default (revision: 1.14)
Lightning_Branch_DAS_default_fix (revision: 1.14)
Lightning_Branch_DAS_default (revision: 1.14)
Lightning_Branch_DAS_ap1_0 (revision: 1.14)
SurfaceConstituents_for_ColumnDiagnostics (revision: 1.17)
ImplementationMEGANv1 (revision: 1.17)
Flux_Freq_Routines_in_Modules (revision: 1.16)
GeorgiaTechCloudModule_v2 (revision: 1.16)
HorizontalDomainForFreqOutputs (revision: 1.16)
GeorgiaTechCloudModule_v1 (revision: 1.16)

%cvs export [-D today][-r tag] gmi_gsfc

GMI User’s Guide 31

gives exported version of the gmi gsfc directory. The expressions in [] are options. ‘-D today’
gives the latest version of the code. The user can also specify ”-D ’September 26, 2007’” (note
that the date is in single quote) for version of that day, or use ’-r release-1-17’ for release 1.17
(release-1-17 is a CVS tag), or ’-r NOxEmissionsScalingFactors v3’ for the gmi gsfc directory with
tag NOxEmissionsScalingFactors v3.

%cvs checkout gmi_gsfc

provides in addition to exported version, CVS information. With such information, users will be
able to keep up-to-date with our release automatically with simple cvs update command (instead
of having to manually insert the changes we broadcast). Once you check out a version of the code,
you form a ’working directory’.

%cvs update gmi_gsfc

only works if a user has cvs-checked-out version. This brings the changes made in the master
repository to the user’s working directory. An example of the print out from this command:

Example 1 You want to checkout a copy of the GMI code from sourcemotel. Then type

%cvs checkout gmi_gsfc

It creates a copy of the code in your own directory. Assume you have made some changes in the
code and the next code release arrives. You can simply do a cvs update to bring the new changes
in the new release into your copy:

%cd gmi_gsfc
%cvs update

A list is printed on your screen to let you know which files were updated (a ’U’ in front of the file)
from the new release, and which files were modified (a ’M’ in front of the file) and any conflict that
may result from this update.

Remark 7 Note that doing cvs update under the gmi gsfc directory will automatically update
the entire code. You can update individual directory or file by going into the directory and do cvs
update- which updates that directory and any sub-directories, or cvs update filename- which
updates only that file.

%cvs diff filename

This does the differencing between the file in your working repository with the one you checkout
from the sourcemotel repository.

Example 2 Assume that you want to compare the file Makefile (inside gmi gsfc) from your working
repository with the one on sourcemotel in the release with TAG NOxEmissionsScalingFactors v3:

%cvs diff -r NOxEmissionsScalingFactors_v3 Makefile

Index: Makefile
===
RCS file: /cvsroot/gmi/gmi_gsfc/Makefile,v
retrieving revision 1.17
retrieving revision 1.18

32 GMI User’s Guide

diff -r1.17 -r1.18
9,11c9
< LIBS = -L$(LIB_DIR)
<
< #FFLAGS+=$(INCS)

> LIBS = -L$(LIB_DIR)
38,39c36,37
< #all: packageddir shared components
< all: packageddir shared components applications

> new: packageddir shared components applications
> all: packageddir shared components applications legacy
48a47,49
> legacy:
> (cd $(GMIHOME)/gem; $(MKMF); make)
>
57,58c58,59
< # @$(MAKE) -C $(APPLICATIONS) EmissionDriver.ex
< # @$(MAKE) -C $(APPLICATIONS) DiffusionDriver.ex

> # @$(MAKE) -C $(APPLICATIONS) EmissionDriver.ex
> # @$(MAKE) -C $(APPLICATIONS) DiffusionDriver.ex
68a70
> (cd $(GMIHOME)/gem; make clean)

%cvs log filename

This lists the log messages and status of the master repository.

8.4 Use CVS to Track Both New Releases and Your Changes

If you want to maintain your own code and keep track of the changes from sourcemotel, what you
should do is create your own repository and use the ‘vendor branch’ concept in CVS. If you do it
from your local machine, set

setenv CVSROOT some-home-directory-on-your-local-machine

(e.g. setenv CVSROOT /home/userid/gmi repository)
in your .cshrc file.
To initialize the repository, type

%cd /home/userid/gmi_repository
%cvs init

Now you can checkout any release of the GMI code. Assume that you want to obtain the release
HorizontalDomainForFreqOutputs

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -r \
HorizontalDomainForFreqOutputs gmi_gsfc

If you only want the Components/ directory, type

GMI User’s Guide 33

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -d Components -r \
HorizontalDomainForFreqOutputs gmi_gsfc/Components

You can now work with the code. If you make some changes and want to bring them to your
repository for keep, do the following from the directory gmi repository/gmi gsfc:

%cvs diff > output.diff
%cvs update
%cvs commit -m ’message for the commit’

If you want to create a new file that does not exist in the repository and you want to add it in the
repository, type (from the directory where the new file resides)

%cvs add new_file

Example 3 Assume that you want to add a new chemical mechanism, new chem. In the directory
actm/gmimod/chem, you have created the directory new chem/ that contains the subdirectories in-
clude setkin/ and setkin/. To add the directory structure of the new chemical mechanism into the
repository, do the following:

%cd Components/GmiChemistry/mechanisms
%cvs add new_chem/
%cvs commit new_chem/
%cd new_chem
%cvs add include_setkin/
%cvs commit include_setkin/
%cd include_setkin
%cvs add *
%cd ../
%cvs add setkin/
%cvs commit setkin/
%cd setkin
%cvs add *

8.5 Where To Obtain CVS?

https://ccvs.cvshome.org/servlets/ProjectDocumentList

34 GMI User’s Guide

